

Edexcel A2 Physics: Oscillations – Calculation Practice

Praneel Physics

1. A mass-spring system has a spring constant $k = 200 \text{ N/m}$. If the mass attached to the spring is 2 kg, calculate the natural frequency of the system. (P)

Working and Answer:

$$\text{Natural frequency } f = \frac{1}{2\pi} \sqrt{\frac{k}{m}}, f = \frac{1}{2\pi} \sqrt{\frac{200}{2}} = \frac{1}{2\pi} \sqrt{100} = \frac{10}{2\pi} \approx 1.59 \text{ Hz. Answer: } 1.59 \text{ Hz}$$

2. A pendulum has a length of 1.5 m. Calculate the period of the pendulum. (P)

Working and Answer:

$$\text{Period } T = 2\pi\sqrt{\frac{L}{g}}, T = 2\pi\sqrt{\frac{1.5}{9.81}} \approx 2\pi\sqrt{0.153} \approx 2\pi \times 0.39 \approx 2.45 \text{ s. Answer: } 2.45 \text{ s}$$

3. A mass on a spring oscillates with an amplitude of 0.1 m and a frequency of 2 Hz. Calculate the maximum speed of the mass. (P)

Working and Answer:

$$\text{Maximum speed } v_{\max} = A \cdot \omega, \omega = 2\pi f = 2\pi \times 2 = 4\pi \text{ rad/s, } v_{\max} = 0.1 \cdot 4\pi \approx 1.26 \text{ m/s. Answer: } 1.26 \text{ m/s}$$

4. A simple harmonic oscillator has a total energy of 50 J and a mass of 2 kg. Calculate the maximum displacement if the spring constant is 200 N/m. (P)

Working and Answer:

$$\text{Total energy } E = \frac{1}{2}kA^2, 50 = \frac{1}{2} \cdot 200 \cdot A^2, A^2 = \frac{50 \cdot 2}{200} = \frac{100}{200} = 0.5, A = \sqrt{0.5} \approx 0.71 \text{ m. Answer: } 0.71 \text{ m}$$

5. A mass of 0.5 kg is attached to a spring with a spring constant of 100 N/m. Calculate the potential energy stored in the spring when it is compressed by 0.2 m. (P)

Working and Answer:

$$\text{Potential energy } PE = \frac{1}{2}kx^2, PE = \frac{1}{2} \cdot 100 \cdot (0.2)^2 = \frac{1}{2} \cdot 100 \cdot 0.04 = 2 \text{ J. Answer: } 2 \text{ J}$$

6. A pendulum swings with a maximum angle of 30° . Calculate the height it reaches above its lowest point if the length of the pendulum is 2 m. (PP)

Working and Answer:

$$\text{Height } h = L - L \cos(\theta), h = 2 - 2 \cos(30^\circ) = 2 - 2 \cdot \frac{\sqrt{3}}{2} = 2 - \sqrt{3} \approx 0.268 \text{ m. Answer: } 0.268 \text{ m}$$

7. A mass-spring system oscillates with a frequency of 1.5 Hz. If the mass is 0.8 kg, calculate the spring constant. (PP)

Working and Answer:

$$\text{Frequency } f = \frac{1}{2\pi} \sqrt{\frac{k}{m}}, k = (2\pi f)^2 m, k = (2\pi \cdot 1.5)^2 \cdot 0.8 \approx (9.42)^2 \cdot 0.8 \approx 88.8 \cdot 0.8 \approx 71.04 \text{ N/m. Answer: } 71.04 \text{ N/m}$$

8. A mass of 1 kg is attached to a spring with a spring constant of 50 N/m. Calculate the period of oscillation. (PP)

Working and Answer:

$$\text{Period } T = 2\pi\sqrt{\frac{m}{k}}, T = 2\pi\sqrt{\frac{1}{50}} \approx 2\pi\sqrt{0.02} \approx 2\pi \cdot 0.141 \approx 0.886 \text{ s. Answer: } 0.886 \text{ s}$$

9. A mass-spring system has a total energy of 20 J and a spring constant of 100 N/m. Calculate the maximum displacement. (PP)

Working and Answer:

$$\text{Total energy } E = \frac{1}{2}kA^2, 20 = \frac{1}{2} \cdot 100 \cdot A^2, A^2 = \frac{20 \cdot 2}{100} = \frac{40}{100} = 0.4, A = \sqrt{0.4} \approx 0.632 \text{ m. Answer: } 0.632 \text{ m}$$

10. A pendulum has a length of 3 m and swings with a small angle approximation. Calculate the frequency of the pendulum. (PP)

Working and Answer:

$$\text{Frequency } f = \frac{1}{2\pi} \sqrt{\frac{g}{L}}, f = \frac{1}{2\pi} \sqrt{\frac{9.81}{3}} \approx \frac{1}{2\pi} \sqrt{3.27} \approx \frac{1}{2\pi} \cdot 1.81 \approx 0.29 \text{ Hz. Answer: } 0.29 \text{ Hz}$$

11. A mass-spring system oscillates with a frequency of 2 Hz and a mass of 0.5 kg. Calculate the spring constant. (PPP)

Working and Answer:

$$\text{Frequency } f = \frac{1}{2\pi} \sqrt{\frac{k}{m}}, k = (2\pi f)^2 m, k = (2\pi \cdot 2)^2 \cdot 0.5 \approx (12.57)^2 \cdot 0.5 \approx 158.1 \cdot 0.5 \approx 79.05 \text{ N/m. Answer: } 79.05 \text{ N/m}$$

12. A mass of 0.75 kg is attached to a spring with a spring constant of 150 N/m. Calculate the maximum potential energy stored in the spring when it is compressed by 0.1 m. (PPP)

Working and Answer:

$$\text{Potential energy } PE = \frac{1}{2}kx^2, PE = \frac{1}{2} \cdot 150 \cdot (0.1)^2 = \frac{1}{2} \cdot 150 \cdot 0.01 = 0.75 \text{ J. Answer: 0.75 J}$$

13. A pendulum has a length of 2.5 m and swings with a maximum angle of 45° . Calculate the maximum height above the lowest point. (PPP)

Working and Answer:

$$\text{Height } h = L - L\cos(\theta), h = 2.5 - 2.5 \cos(45^\circ) = 2.5 - 2.5 \cdot \frac{\sqrt{2}}{2} = 2.5 - 1.77 \approx 0.73 \text{ m. Answer: 0.73 m}$$

14. A mass-spring system oscillates with a total energy of 30 J and a spring constant of 200 N/m. Calculate the maximum displacement. (PPP)

Working and Answer:

$$\text{Total energy } E = \frac{1}{2}kA^2, 30 = \frac{1}{2} \cdot 200 \cdot A^2, A^2 = \frac{30 \cdot 2}{200} = \frac{60}{200} = 0.3, A = \sqrt{0.3} \approx 0.547 \text{ m. Answer: } 0.547 \text{ m}$$

15. A mass of 1.2 kg is attached to a spring with a spring constant of 80 N/m. Calculate the period of oscillation. (PPP)

Working and Answer:

$$\text{Period } T = 2\pi\sqrt{\frac{m}{k}}, T = 2\pi\sqrt{\frac{1.2}{80}} \approx 2\pi\sqrt{0.015} \approx 2\pi \cdot 0.122 \approx 0.766 \text{ s. Answer: } 0.766 \text{ s}$$

16. A mass-spring system has a frequency of 3 Hz and a mass of 1 kg. Calculate the spring constant. (PPPP)

Working and Answer:

$$\text{Frequency } f = \frac{1}{2\pi} \sqrt{\frac{k}{m}}, k = (2\pi f)^2 m, k = (2\pi \cdot 3)^2 \cdot 1 \approx (18.85)^2 \cdot 1 \approx 355.4 \text{ N/m. Answer: } 355.4 \text{ N/m}$$

17. A pendulum has a length of 4 m and swings with a small angle approximation. Calculate the frequency of the pendulum. (PPPP)

Working and Answer:

$$\text{Frequency } f = \frac{1}{2\pi} \sqrt{\frac{g}{L}}, f = \frac{1}{2\pi} \sqrt{\frac{9.81}{4}} \approx \frac{1}{2\pi} \sqrt{2.4525} \approx \frac{1}{2\pi} \cdot 1.57 \approx 0.25 \text{ Hz. Answer: } 0.25 \text{ Hz}$$

18. A mass of 0.5 kg is attached to a spring with a spring constant of 120 N/m. Calculate the maximum speed if the amplitude is 0.15 m. (PPPP)

Working and Answer:

$$\text{Maximum speed } v_{\max} = A \cdot \omega, \omega = 2\pi f = 2\pi \sqrt{\frac{k}{m}} = 2\pi \sqrt{\frac{120}{0.5}} \approx 2\pi \cdot 15.49 \approx 97.1 \text{ rad/s}, v_{\max} = 0.15 \cdot 97.1 \approx 14.57 \text{ m/s. Answer: } 14.57 \text{ m/s}$$

19. A mass-spring system oscillates with a total energy of 40 J and a spring constant of 250 N/m. Calculate the maximum displacement. (PPPP)

Working and Answer:

$$\text{Total energy } E = \frac{1}{2}kA^2, 40 = \frac{1}{2} \cdot 250 \cdot A^2, A^2 = \frac{40 \cdot 2}{250} = \frac{80}{250} = 0.32, A = \sqrt{0.32} \approx 0.566 \text{ m. Answer: } 0.566 \text{ m}$$

20. A pendulum has a length of 5 m and swings with a maximum angle of 60° . Calculate the maximum height above the lowest point. (PPPP)

Working and Answer:

$$\text{Height } h = L - L \cos(\theta), h = 5 - 5 \cos(60^\circ) = 5 - 5 \cdot 0.5 = 5 - 2.5 = 2.5 \text{ m. Answer: 2.5 m}$$

21. A mass of 1.5 kg is attached to a spring with a spring constant of 300 N/m. Calculate the period of oscillation. (PPPP)

Working and Answer:

$$\text{Period } T = 2\pi\sqrt{\frac{m}{k}}, T = 2\pi\sqrt{\frac{1.5}{300}} \approx 2\pi\sqrt{0.005} \approx 2\pi \cdot 0.071 \approx 0.446 \text{ s. Answer: 0.446 s}$$

22. A mass-spring system oscillates with a frequency of 4 Hz and a mass of 0.2 kg. Calculate the spring constant. (PPPPP)

Working and Answer:

$$\text{Frequency } f = \frac{1}{2\pi} \sqrt{\frac{k}{m}}, k = (2\pi f)^2 m, k = (2\pi \cdot 4)^2 \cdot 0.2 \approx (25.13)^2 \cdot 0.2 \approx 632.5 \cdot 0.2 \approx 126.5 \text{ N/m. Answer: } 126.5 \text{ N/m}$$

23. A pendulum has a length of 6 m and swings with a small angle approximation. Calculate the frequency of the pendulum. (PPPPP)

Working and Answer:

$$\text{Frequency } f = \frac{1}{2\pi} \sqrt{\frac{g}{L}}, f = \frac{1}{2\pi} \sqrt{\frac{9.81}{6}} \approx \frac{1}{2\pi} \sqrt{1.635} \approx \frac{1}{2\pi} \cdot 1.28 \approx 0.204 \text{ Hz. Answer: } 0.204 \text{ Hz}$$

24. A mass of 2 kg is attached to a spring with a spring constant of 400 N/m. Calculate the maximum speed if the amplitude is 0.2 m. (PPPPP)

Working and Answer:

$$\text{Maximum speed } v_{\max} = A \cdot \omega, \omega = 2\pi f = 2\pi \sqrt{\frac{k}{m}} = 2\pi \sqrt{\frac{400}{2}} \approx 2\pi \cdot 14.14 \approx 88.9 \text{ rad/s}, v_{\max} = 0.2 \cdot 88.9 \approx 17.78 \text{ m/s. Answer: } 17.78 \text{ m/s}$$

25. A mass-spring system has a total energy of 60 J and a spring constant of 500 N/m. Calculate the maximum displacement. (PPPPP)

Working and Answer:

$$\text{Total energy } E = \frac{1}{2}kA^2, 60 = \frac{1}{2} \cdot 500 \cdot A^2, A^2 = \frac{60 \cdot 2}{500} = \frac{120}{500} = 0.24, A = \sqrt{0.24} \approx 0.49 \text{ m. Answer: } 0.49 \text{ m}$$